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To describe the aggregation behaviors on substrates with long-range jump paths, a model of particle-cluster
aggregation on a two-dimensional small-world network is presented. This model is characterized by two
parameters: the clustering exponenta and the long-range connection ratef. The results show that there exists
an asymptotic fractal dimensionDf

max that depends upona. With decrement ofa, Df
max varies from 1.7 to 2.0,

which corresponds to a crossover from diffusion-limited-aggregation-like to dense growth. The change of the
aggregation pattern results from the long-range connection in the network, which reduces the effect of screen-
ing during the aggregation. When the system size is not large enough, the effective fractal dimensionDf

depends uponf because of the finite-size effect. With primitive analysis, we obtain the expression of the
effective fractal dimensionDf with the network parametersa andf.
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During the past two decades, the far-from equilibrium
growth phenomena have been extensively investigated both
experimentally and theoretically because of their relevant ap-
plications in many fields of science and technology[1–6].
The structure of growing patterns strongly depends on the
dynamics of the growth process. Many efforts have been
directed to the development of growth models in order to
account for the existing fractal patterns[7–14]. The
diffusion-limited aggregation(DLA ), which was introduced
by Witten and Sander, is probably the most widely known
growth model[8]. The DLA and its variants can recur in
many fractal patterns in diffusive systems, including elec-
trodeposition, colloid aggregation, crystal growth, viscous
fingering, dielectric breakdown, etc.[1–3].

In the DLA model, the particle jumps from the current site
to one of theirnearest neighborsat each step, performing
purely random walks, until it hits and sticks to the cluster[8].
However, in some physical processes, except nearest-
neighboring jumps, there also exist some long-range jumps
through which the particle can move to a distant site at a
step. An example is the Lévy flight of particles in the pro-
cesses such as bulk-mediated surface diffusion, transport in
micelle systems, and heterogeneous rocks[15], in which the
jump distance follows a power-law distribution. Another ex-
ample is the diffusion of adatoms on metal surfaces, which is
important for the thin-film growth, heterogeneous catalysis,
and oxidation[15]. In this case, a bunch of defects or impu-
rities in the substrate may play the part of the long-range
jump path. In the cases of weak adsorbate-substrate interac-
tion, the long jumps, spanning multiple lattice spacings, also
play a dominating role for the surface diffusion[16]. In this
Brief Report, we introduce the notion of a small-world net-
work [17] into the investigation of the aggregation of par-
ticles with long-range diffusion. The basis idea is that, re-
garding the lattice point of the real space as the node of the
network, the jumps of particles in real space correspond to
the links in the network.

The small-world network[17–26] is suitable to describe
the distribution of the short- and long-range paths for the
diffusion of particles in the substrate. Usually, there are two
methods to build a small-world network. One is by randomly
rewiring the original links of the regular lattice, and the other
is by adding the random links to the regular lattice. The
networks created by using these two methods have very
similar scaling characters[17–19]. However, for the network
created by rewiring the original links, there probably exist
isolated sites which have no link to any other sites of the
system; but for the network created by adding the random
links, there is no isolated site. Thus, considering the continu-
ity of the real space, we use the addition of the random links
to build the small-world network. We build the network on
the basis of a square lattice of sizeLnw3Lnw with periodic
boundary conditions. Each site in the lattice is connected to
its four nearest-neighboring neighbors, representing nearest
jumps. Then, a long-range connection, denoting a long-range
jump, is added between two randomly chosen sites with the
probability [15,22–24]

psrd , r−a, s1d

wherer is the Euclidean distance between two selected sites
anda saù0d is a model parameter. This process is repeated
until the ratiof between the number of long-range connec-
tions and that of short-range ones reaches a desired value.
Thus, the average coordination number per site is 4s1+fd in
the present small-world network. When the parametera=0,
we have a uniform distribution over long-range connections,
and the present model reduces to the basic small-world net-
work [25]. As a increases, the long-range connections of a
site become more and more clustered in its vicinity. Thus,a
serves as a structural parameter measuring how widely “net-
worked” the underlying society of sites is. The parametera
is called the clustering exponent, which characterizes the lo-
calized degree of the long-range connections in the network.

Based on the small-world network as created above, we
describe how the particles aggregate. First, a particle is
launched at a random position on a circle of radius*Corresponding author. Email address: xwzou@whu.edu.cn
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Rss=Rmax+DRd centered on the original cluster, whereRmax
is the outer radius of the cluster andDR is chosen so that
DR−a<10−4 if possible. The motivation for the choice ofRs
is to ensure that there is only a small probability that the
particle will contact the cluster during the first step in the
movement. Then the particle jumps from the current site to
one of its linked sites which are not occupied by the growing
cluster, with equal probability step by step. It ensures that
any site in the cluster has only one particle. This moving rule
is reasonable because we focus on the two-dimensional pat-
tern of the cluster. The particle stops and sticks to the cluster
permanently when it moves into a site which is the nearest
neighbor of the growing cluster in terms of the Euclidean
distance. In this way, starting from an immobile seed, the
cluster will grow gradually when a particle hits it and be-
comes a part of it.

We have performed extensive numerical simulations for
the particle-cluster aggregation on the small-world network
with sizeLnw=2000. To reduce the effect of fluctuation, for
each set of parameterssa ,fd the calculated result is taken
from the averaging over ten different network realizations
and at least 10 independent runs for each network realiza-
tion.

Figure 1 shows the simulation patterns of aggregates as a
function of the long-range connection ratef for several clus-
tering exponentsa for clusters with number of particlesN
=10 000. It can be seen that as the parametersa andf vary,
the patterns of aggregates exhibit rich behaviors. For small
a, with the increase off the patterns of aggregates evolve
from the thin and sparse branching structure to the thick and
dense branching one, and finally to a compact cluster one.
However, for largea the patterns of aggregates almost do not
vary with f, and remain a kind of prototype disorder struc-
ture. To quantify the patterns of aggregates, we calculate the
fractal dimensionsDf of the aggregates, which are shown by
symbols in Fig. 2.

It can be seen from Fig. 2 that the fractal dimensionDf
tends to an asymptotic valueDf

max as the long-range connec-
tion ratef is large enough. As expected, the asymptotic frac-
tal dimensionDf

max depends on the clustering exponenta.
However, it is hard to understand how the fractal dimension

Df shows a strong dependence on the long-range connection
ratef. This is due to the finite system size. It is plausible to
imagine that there exists a special lengthL for given values
a andf. When the length of the clusterRcluster@L, the long-
range connection strongly affects the morphology of the ag-
gregate, and the fractal dimensionDf takes the asymptotic
value Df

max. When Rcluster!L, the effect of the long-range
connection is restrained and the aggregate maintains the
DLA cluster. For intermediate size of the cluster,Rcluster is
comparable toL, and Df takes an intermediate value. The
special lengthL depends on the clustering exponenta and
long-range connection ratef. f determines the amount of
long-range connections, soL increases asf decrease.a in-
dicates the distance restriction of the long-range connection,
thereforeL decrease asa reduces. In the present simulation,
the particle number of the clusterN=10 000. Whenf
=10−4, about one long-range connection exists in the area of
the cluster. As expected,Rcluster!L and Df <1.7 for all a
(see the left side of Fig. 2). On the contrary, whenf is large
anda is small(e.g.,f=1 anda=0.5 or 2), L is so small that
the condition ofRcluster@L is met. In this case,Df reaches its
asymptotic valueDf

max (see the right side of Fig. 2). In the
intermediate region,L varies from a large value to a small
one relative to the size of the cluster, andDf changes from
the fractal dimension of pure DLA to the asymptotic one,
correspondingly. The value ofDf depends on the size of the
cluster, so we might regard it as the effective fractal dimen-
sion. The true asymptotic scaling is obtained only from
Rcluster@L, makingDf independent off.

Now we turn to deduce a rough expression of the effec-
tive fractal dimensionDf as a function off for variousa.
The growth of the cluster comes from two contributions: one
is the nearest-neighbor links in the underlying regular lattice,
and the other is the effective long-range links. We take the
effect of the underlying regular lattice on the effective fractal
dimensionDf as unit 1, and assume that the contribution of
effective long-range connections toDf is proportional tof
with the poweru as

G = Bsadfusad, s2d

whereB is a proportional factor. The exponentu expresses
the effectiveness of the long-range connection and it depends

FIG. 1. Patterns of the clusters as a function of the long-range
connection ratef for several clustering exponentsa.

FIG. 2. The effective fractal dimensionsDf of the clusters as a
function of the long-range connection ratef for a set ofa. The
symbols are the simulation results, and the lines are the plots of Eq.
(3).
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on a. Thus, we obtain the effective fractal dimensionDf as
the form

Dfsa,fd = Df
DLA +

Bfu

1 + Bfu sDf
max− Df

DLAd, s3d

whereDf
DLA is the fractal dimension of the pure DLA with a

value of about 1.7, andDf
max is the asymptotic value of the

fractal dimension of the cluster for largef which can be
obtained from the simulation data. The first term on the right
side of Eq.(3) corresponds to the contribution of the under-
lying regular lattice. The second term takes into account the
increase of the fractal dimension resulting from the effective
long-range connections. Fitting the simulation results shown
in Fig. 2 by using Eq.(3), the fitting parametersB andu are
obtained and listed in Table I.

We also investigate the influence of the clustering expo-
nent a on the aggregating behavior of particles. Figure 3
shows the effective fractal dimensionDf as a function ofa
for three typical long-range connection ratesf. For largea
(e.g., a.4 in Fig. 3), the long-range connection is short-
ranged essentially, and the aggregate appears to be a DLA
cluster. In this case,Df <1.7 for all f. As a decreases, the
length of the long-range connection becomes larger, and the
long-range connections make a contribution to the morphol-
ogy of the aggregate more and more. Correspondingly,Df
increases from 1.7 to 2.0. In Fig. 3, theDf -a relation de-
pends uponf. It comes from the effect of the finite system

size. It can be seen from Fig. 3 that whena is small enough
sa,1d, Df does not vary withf any longer and it reaches
the asymptotic valueDf

max for the present system with a par-
ticle number ofN=10 000. In the other case, the finite sys-
tem size has an effect on the morphology of the aggregate
andDf varies withf.

In summary, we investigate the particle-cluster aggrega-
tion on the substrates with both short-range jump paths and
long-range ones. The substrate is expressed as a small-world
network with the parametera andf. Thus, the behavior of
the aggregation pattern can be characterized by the param-
eters of the small-world network. As the clustering exponent
a and long-range connection ratef vary, the pattern of the
aggregate crosses over from the DLA-like pattern to the
dense growth one, and the fractal dimension changes con-
tinuously from about 1.7 to 2.
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