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Particle-cluster aggregation on a small-world network
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To describe the aggregation behaviors on substrates with long-range jump paths, a model of particle-cluster
aggregation on a two-dimensional small-world network is presented. This model is characterized by two
parameters: the clustering exponenand the long-range connection rateThe results show that there exists
an asymptotic fractal dimensidd{"® that depends upoa. With decrement ofr, D{"® varies from 1.7 to 2.0,
which corresponds to a crossover from diffusion-limited-aggregation-like to dense growth. The change of the
aggregation pattern results from the long-range connection in the network, which reduces the effect of screen-
ing during the aggregation. When the system size is not large enough, the effective fractal diniznsion
depends uporp because of the finite-size effect. With primitive analysis, we obtain the expression of the
effective fractal dimensiol; with the network parameters and ¢.
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During the past two decades, the far-from equilibrium  The small-world networf17-2§9 is suitable to describe
growth phenomena have been extensively investigated bothe distribution of the short- and long-range paths for the
experimentally and theoretically because of their relevant apdiffusion of particles in the substrate. Usually, there are two
plications in many fields of science and technolddy-6.  methods to build a small-world network. One is by randomly
The structure of growing patterns strongly depends on theewiring the original links of the regular lattice, and the other
dynamics of the growth process. Many efforts have beefs by adding the random links to the regular lattice. The
directed to the development of growth models in order tonetworks created by using these two methods have very
account for the existing fractal patterng’—14. The  similar scaling charactefd 7-19. However, for the network
diffusion-limited aggregatioiDLA), which was introduced created by rewiring the original links, there probably exist
by Witten and Sander, is probably the most widely knownisolated sites which have no link to any other sites of the
growth model[8]. The DLA and its variants can recur in system; but for the network created by adding the random
many fractal patterns in diffusive systems, including elec-inks, there is no isolated site. Thus, considering the continu-
trodeposition, colloid aggregation, crystal growth, viscousity of the real space, we use the addition of the random links
fingering, dielectric breakdown, etf1-3]. to build the small-world network. We build the network on

In the DLA model, the particle jumps from the current site the basis of a square lattice of sikg, X L, with periodic
to one of theirnearest neighborst each step, performing boundary conditions. Each site in the lattice is connected to
purely random walks, until it hits and sticks to the clug&r its four nearest-neighboring neighbors, representing nearest
However, in some physical processes, except nearesjumps. Then, a long-range connection, denoting a long-range
neighboring jumps, there also exist some long-range jumpfimp, is added between two randomly chosen sites with the
through which the particle can move to a distant site at grobability [15,22—24
step. An example is the Lévy flight of particles in the pro-
cesses such as bulk-mediated surface diffusion, transport in p(r) ~r™«, (1)
micelle systems, and heterogeneous rddks, in which the
jump distance follows a power-law distribution. Another ex- wherer is the Euclidean distance between two selected sites
ample is the diffusion of adatoms on metal surfaces, which isind« («=0) is a model parameter. This process is repeated
important for the thin-film growth, heterogeneous catalysisuntil the ratio ¢ between the number of long-range connec-
and oxidation[15]. In this case, a bunch of defects or impu- tions and that of short-range ones reaches a desired value.
rities in the substrate may play the part of the long-rangerhus, the average coordination number per sitg(1s+4) in
jump path. In the cases of weak adsorbate-substrate interagre present small-world network. When the parametef,
tion, the long jumps, spanning multiple lattice spacings, alsQye have a uniform distribution over long-range connections,
play a dominating role for the surface diffusipb6]. In this  and the present model reduces to the basic small-world net-
Brief Report, we introduce the notion of a small-world net-\york [25]. As « increases, the long-range connections of a
work [17] into the investigation of the aggregation of par- site become more and more clustered in its vicinity. Thus,
ticles with long-range diffusion. The basis idea is that, re-serves as a structural parameter measuring how widely “net-
garding the lattice point of the real space as the node of th@orked” the underlying society of sites is. The parameter
network, the jumps of particles in real space correspond t¢s called the clustering exponent, which characterizes the lo-
the links in the network. calized degree of the long-range connections in the network.

Based on the small-world network as created above, we
describe how the particles aggregate. First, a particle is
*Corresponding author. Email address: xwzou@whu.edu.cn  launched at a random position on a circle of radius
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FIG. 2. The effective fractal dimensiom of the clusters as a
function of the long-range connection ragefor a set ofa. The

FIG. .1' Patterns of the clusters asa function of the Iong-rang%ymbms are the simulation results, and the lines are the plots of Eq.
connection ratep for several clustering exponents 3)

Ry(=Rnact AR) centered on the original cluster, wheRgax b shows a strong dependence on the long-range connection
IS t_hae oute4r.rad|us_ of the cluster aiR is chosen so that 546, This is due to the finite system size. It is plausible to
AR™“~10" if possible. The motivation for the choice 8  jmagine that there exists a special lengtfior given values
is to ensure that there is only a s_mall prol_)ablllty th_at the, and #. When the length of the clust&, .= L, the long-
particle will contact the cluster during the first step in therange connection strongly affects the morphology of the ag-
movement. Then the particle jumps from the current site tQyregate, and the fractal dimensi@y takes the asymptotic
one of its linked sites which are not occupied by the growingyalue D" When Ry ser<L, the effect of the long-range
cluster, with equal probability step by step. It ensures thatonnection is restrained and the aggregate maintains the
any site in the cluster has only one particle. This moving ruleDLA cluster. For intermediate size of the clust®y s iS
is reasonable because we focus on the two-dimensional patemparable td., and D; takes an intermediate value. The
tern of the cluster. The particle stops and sticks to the clustespecial lengthL depends on the clustering exponentind
permanently when it moves into a site which is the neareslong-range connection rat$. ¢ determines the amount of
neighbor of the growing cluster in terms of the Euclideanlong-range connections, doincreases ag decreasea in-
distance. In this way, starting from an immobile seed, thedicates the distance restriction of the long-range connection,
cluster will grow gradually when a particle hits it and be- thereforeL decrease aa reduces. In the present simulation,
comes a part of it. the particle number of the clusted=10000. When¢

We have performed extensive numerical simulations for= 10, about one long-range connection exists in the area of
the particle-cluster aggregation on the small-world networkn€ cluster. As expecte®ysie<L and Di~1.7 for all «
with size L,,=2000. To reduce the effect of fluctuation, for (S€€ the l€ft side of Fig.)20n the contrary, whewb is large
each set of parametefgs, ¢) the calculated result is taken anda is sr_nall(e.g.,¢-1 6‘.”0'“—0-5 orla, L is so small th_at
from the averaging over ten different network realizationsthe condl_tlon ORyiuger> L 1S met. In thls caseDf_reaches s

asymptotic valueD{"® (see the right side of Fig.)2In the

a_md at least 10 independent runs for each network realizefﬁtermediate regionl. varies from a large value to a small
tion. . . one relative to the size of the cluster, aid¢g changes from
Figure 1 shows the simulation patterns of aggregates as@e fractal dimension of pure DLA to the asymptotic one,
function of the long-range connection rajefor several clus-  correspondingly. The value @; depends on the size of the
tering exponentsy for clusters with number of particled  ¢jyster, so we might regard it as the effective fractal dimen-
=10000. It can be seen that as the parameteand ¢ vary,  sjon. The true asymptotic scaling is obtained only from
the patterns of aggregates exhibit rich behaviors. For smaf, .= L, makingD; independent ofp.
a, with the increase ofp the patterns of aggregates evolve  Now we turn to deduce a rough expression of the effec-
from the thin and sparse branching structure to the thick angdve fractal dimensiorD; as a function of¢ for various a.
dense branching one, and finally to a compact cluster onélhe growth of the cluster comes from two contributions: one
However, for largex the patterns of aggregates almost do notis the nearest-neighbor links in the underlying regular lattice,
vary with ¢, and remain a kind of prototype disorder struc- and the other is the effective long-range links. We take the
ture. To quantify the patterns of aggregates, we calculate theffect of the underlying regular lattice on the effective fractal
fractal dimension®; of the aggregates, which are shown by dimensionD; as unit 1, and assume that the contribution of

symbols in Fig. 2. effective long-range connections & is proportional to¢
It can be seen from Fig. 2 that the fractal dimension  with the powerd as
tends to an asymptotic valu@{"* as the long-range connec- I = B(a) @ )

tion rate¢ is large enough. As expected, the asymptotic frac-
tal dimensionD{"™® depends on the clustering exponent whereB is a proportional factor. The exponeétexpresses
However, it is hard to understand how the fractal dimensiorthe effectiveness of the long-range connection and it depends
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on «. Thus, we obtain the effective fractal dimensibDp as . . . . . . .
the form 0 1 2 3 4 5 6
o
Bg’ , , ,
D¢(a, ¢) = DP*A + ;’S(’(D?ﬁ‘x— DP), (3) FIG. 3. The effective fractal dimensioii of the clusters as a
1+B¢ function of the clustering exponeat for several fixeds values.
whereDP™* is the fractal dimension of the pure DLAWith & gjze |t can be seen from Fig. 3 that wheris small enough

value of about 1.7, an®{"**is the asymptotic value of the (,<1) D, does not vary withé any longer and it reaches
fractgl dimension o_f the _cluster for Iarg¢ which can be_ the asymptotic valu®™ for the present system with a par-
obtained from the simulation data. The first term on the right;.jo number ofN=10 000. In the other case. the finite sys-

sifje of Eq.(3) co_rresponds to the contribution of the under- o, size has an effect on the morphology of the aggregate
lying regular lattice. The second term takes into account th%nd D; varies with ¢.

increase of the fractal dimension resulting from the effective |, summary, we investigate the particle-cluster aggrega-

!ong-range connections. Fitting_the simulation results showRion on the substrates with both short-range jump paths and
in Fig. 2 by using Eq(3), the fitting parameterB andf are  |5q4 range ones. The substrate is expressed as a small-world
obtained an_d I'Ste.d n Tablg . ) network with the parameter and ¢. Thus, the behavior of

We also investigate the influence of the clustering expOyhe 4ggregation pattern can be characterized by the param-
nenta on the aggregating behavior of particles. Figure 3gterg of the small-world network. As the clustering exponent
shows the effective fractal dimensi@y as a function ofe , o q long-range connection ragevary, the pattern of the
for three typical long-range connection raigsFor largea  59qregate crosses over from the DLA-like pattern to the

(€., a>4 in Fig. 3, the long-range connection is short- 4ense growth one, and the fractal dimension changes con-
ranged essentially, and the aggregate appears to be a Dlﬁohuously from about 1.7 to 2.

cluster. In this caseD;=~ 1.7 for all ¢. As a decreases, the

length of the long-range connection becomes larger, and the This work was supported by the National Natural Science
long-range connections make a contribution to the morpholFoundation of China through grant nos. 10374QX2VN.Z.)

ogy of the aggregate more and more. Correspondirigly, and 10274056Z.J.T). It was also supported by the Special-
increases from 1.7 to 2.0. In Fig. 3, tiix-« relation de- ized Research Fund for the Doctoral Program of Higher Edu-
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